Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.667
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732234

RESUMEN

Metals are dispersed in natural environments, particularly in the aquatic environment, and accumulate, causing adverse effects on aquatic life. Moreover, chronic polymetallic water pollution is a common problem, and the biological effects of exposure to complex mixtures of metals are the most difficult to interpret. In this review, metal toxicity is examined with a focus on its impact on energy metabolism. Mechanisms regulating adenosine triphosphate (ATP) production and reactive oxygen species (ROS) emission are considered in their dual roles in the development of cytotoxicity and cytoprotection, and mitochondria may become target organelles of metal toxicity when the transmembrane potential is reduced below its phosphorylation level. One of the main consequences of metal toxicity is additional energy costs, and the metabolic load can lead to the disruption of oxidative metabolism and enhanced anaerobiosis.


Asunto(s)
Metabolismo Energético , Peces , Metales , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua , Animales , Metabolismo Energético/efectos de los fármacos , Peces/metabolismo , Metales/toxicidad , Metales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
2.
Biochemistry (Mosc) ; 89(Suppl 1): S180-S204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621750

RESUMEN

In many proteins, supplementary metal-binding centers appear under stress conditions. They are known as aberrant or atypical sites. Physico-chemical properties of proteins are significantly changed after such metal binding, and very stable protein aggregates are formed, in which metals act as "cross-linking" agents. Supplementary metal-binding centers in proteins often arise as a result of posttranslational modifications caused by reactive oxygen and nitrogen species and reactive carbonyl compounds. New chemical groups formed as a result of these modifications can act as ligands for binding metal ions. Special attention is paid to the role of cysteine SH-groups in the formation of supplementary metal-binding centers, since these groups are the main target for the action of reactive species. Supplementary metal binding centers may also appear due to unmasking of amino acid residues when protein conformation changing. Appearance of such centers is usually considered as a pathological process. Such unilateral approach does not allow to obtain an integral view of the phenomenon, ignoring cases when formation of metal complexes with altered proteins is a way to adjust protein properties, activity, and stability under the changed redox conditions. The role of metals in protein aggregation is being studied actively, since it leads to formation of non-membranous organelles, liquid condensates, and solid conglomerates. Some proteins found in such aggregates are typical for various diseases, such as Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and some types of cancer.


Asunto(s)
Metales , Estrés Oxidativo , Metales/química , Metales/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional
3.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678018

RESUMEN

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Asunto(s)
Muerte Celular , Metales , Mitocondrias , Humanos , Mitocondrias/metabolismo , Metales/metabolismo , Animales , Mitofagia , Ferroptosis , Dinámicas Mitocondriales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
4.
Commun Biol ; 7(1): 505, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678117

RESUMEN

Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.


Asunto(s)
Microscopía por Crioelectrón , Ácidos Grasos , alfa-Fetoproteínas , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/química , Glicosilación , Sitios de Unión , Humanos , Ácidos Grasos/metabolismo , Metales/metabolismo , Metales/química , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
5.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672458

RESUMEN

While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/química , Nanopartículas del Metal/química , Animales , Metales/química , Metales/metabolismo , Compuestos Inorgánicos/química
6.
Environ Sci Pollut Res Int ; 31(20): 29644-29655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581633

RESUMEN

Tillandsia species are plants from the Bromeliaceae family which display biomonitoring capacities in both active and passive modes. The bioaccumulation potential of Tillandsia aeranthos (Loisiel.) Desf. and Tillandsia bergeri Mez acclimated to Southern/Mediterranean Europe has never been studied. More generally, few studies have detailed the maximum accumulation potential of Tillandsia leaves through controlled experiments. The aim of this study is to evaluate the maximum accumulation values of seven metals (Co, Cu, Mn, Ni, Pb, Pt, and Zn) in T. aeranthos and T. bergeri leaves. Plants were immersed in different mono elemental metallic solutions of Co (II), Cu (II), Mn (II), Ni (II), Pb (II), Pt (IV), and Zn (II) ions at different concentrations. In addition, cocktail solutions of these seven metals at different concentrations were prepared to study the main differences and the potential selectivity between metals. After exposure, the content of these metals in the leaves were measured by inductively coupled plasma-optical emission spectrometry. Data sets were evaluated by a fitted regression hyperbola model and principal component analysis, maximum metal loading capacity, and thermodynamic affinity constant were determined. The results showed important differences between the two species, with T. bergeri demonstrating higher capacity and affinity for metals than T. aeranthos. Furthermore, between the seven metals, Pb and Ni showed higher enrichment factors (EF). T. bergeri might be a better bioaccumulator than T. aeranthos with marked selectivity for Pb and Ni, metals of concern in air quality biomonitoring.


Asunto(s)
Bioacumulación , Metales , Hojas de la Planta , Tillandsia , Hojas de la Planta/metabolismo , Tillandsia/metabolismo , Metales/metabolismo , Monitoreo del Ambiente
7.
Chem Rev ; 124(9): 5846-5929, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657175

RESUMEN

Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.


Asunto(s)
Colorantes Fluorescentes , Oxidación-Reducción , Colorantes Fluorescentes/química , Humanos , Metales/química , Metales/metabolismo , Animales , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Microscopía Fluorescente
8.
Sci Rep ; 14(1): 5806, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461203

RESUMEN

Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.


Asunto(s)
Cadmio , Bagres , Animales , Cadmio/toxicidad , Cadmio/metabolismo , Metales/farmacología , Metales/metabolismo , Glucosafosfato Deshidrogenasa/genética , Bagres/fisiología , Iones/metabolismo , Glucosa/metabolismo , Fosfatos/metabolismo
9.
Phys Chem Chem Phys ; 26(11): 8919-8931, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426850

RESUMEN

Homing endonucleases (HEs) are highly specific DNA cleaving enzymes, with I-PpoI having been suggested to use a single metal to accelerate phosphodiester bond cleavage. Although an I-PpoI mechanism has been proposed based on experimental structural data, no consensus has been reached regarding the roles of the metal or key active site amino acids. This study uses QM cluster and QM/MM calculations to provide atomic-level details of the I-PpoI catalytic mechanism. Minimal QM cluster and large-scale QM/MM models demonstrate that the experimentally-proposed pathway involving direct Mg2+ coordination to the substrate coupled with leaving group protonation through a metal-activated water is not feasible due to an inconducive I-PpoI active site alignment. Despite QM cluster models of varying size uncovering a pathway involving leaving group protonation by a metal-activated water, indirect (water-mediated) metal coordination to the substrate is required to afford this pathway, which renders this mechanism energetically infeasible. Instead, QM cluster models reveal that the preferred pathway involves direct Mg2+-O3' coordination to stabilize the charged substrate and assist leaving group departure, while H98 activates the water nucleophile. These calculations also underscore that both catalytic residues that directly interact with the substrate and secondary amino acids that position or stabilize these residues are required for efficient catalysis. QM/MM calculations on the solvated enzyme-DNA complex verify the preferred mechanism, which is fully consistent with experimental kinetic, structural, and mutational data. The fundamental understanding of the I-PpoI mechanism of action, gained from the present work can be used to further explore potential uses of this enzyme in biotechnology and medicine, and direct future computational investigations of other members of the understudied HE family.


Asunto(s)
Endonucleasas , Metales , Metales/metabolismo , ADN/química , Catálisis , Agua
10.
Aquat Toxicol ; 269: 106882, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442506

RESUMEN

This study delves into the intricate interplay between ocean acidification (OA), metal bioaccumulation, and cellular responses using mussels (Mytilus galloprovincialis) as bioindicators. For this purpose, environmentally realistic concentrations of isotopically labelled metals (Cd, Cu, Ag, Ce) were added to investigate whether the OA increase would modify metal bioaccumulation and induce adverse effects at the cellular level. The study reveals that while certain elements like Cd and Ag might remain unaffected by OA, the bioavailability of Cu and Ce could potentially escalate, leading to amplified accumulation in marine organisms. The present findings highlight a significant rise in Ce concentrations within different mussel organs under elevated pCO2 conditions, accompanied by an increased isotopic fractionation of Ce (140/142Ce), suggesting a heightened potential for metal accumulation under OA. The results suggested that OA influenced metal accumulation in the gills of mussels. Conversely, metal accumulation in the digestive gland was unaffected by OA. The exposure to both trace metals and OA affects the biochemical responses of M. galloprovincialis, leading to increased metabolic capacity, changes in energy reserves, and alterations in oxidative stress markers, but the specific effects on other biomarkers (e.g., lipid peroxidation, some enzymatic responses or acetylcholinesterase activity) were not uniform, suggesting complex interactions between the stressors and the biochemical pathways in the mussels.


Asunto(s)
Mytilus , Oligoelementos , Contaminantes Químicos del Agua , Animales , Oligoelementos/toxicidad , Oligoelementos/metabolismo , Cadmio/metabolismo , Acetilcolinesterasa/metabolismo , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Agua de Mar , Contaminantes Químicos del Agua/toxicidad , Metales/metabolismo , Biomarcadores/metabolismo
11.
Arch Microbiol ; 206(4): 194, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538852

RESUMEN

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.


Asunto(s)
Arsénico , Arsenitos , Humanos , Arsénico/farmacología , Arsénico/metabolismo , Arsenitos/farmacología , Arsenitos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Metales/farmacología , Metales/metabolismo , Farmacorresistencia Microbiana , Cefotaxima/metabolismo , Cefotaxima/farmacología , Tetraciclinas/metabolismo , Tetraciclinas/farmacología
12.
Front Cell Infect Microbiol ; 14: 1360880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529472

RESUMEN

Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Metales/metabolismo , Homeostasis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Iones/metabolismo
13.
Metallomics ; 16(4)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503570

RESUMEN

Metallothioneins (MTs) are cysteine-rich proteins involved in metal homeostasis, heavy metal detoxification, and protection against oxidative stress. Whether the four mammalian MT isoforms exhibit different metal binding properties is not clear. In this paper, the Cu(I) binding properties of the apo MT1A, apo MT2, and apo MT3 are compared and the relative Cu(I) binding affinities are reported. In all three isoforms, Cu4, Cu6, and Cu10 species form cooperatively, and MT1A and MT2 also form a Cu13 species. The Cu(I) binding properties of Zn7-MT1A, Zn7-MT2, and Zn7-MT3 are compared systematically using isotopically pure 63Cu(I) and 68Zn(II). The species formed in each MT isoform were detected through electrospray ionization-mass spectrometry and further characterized using room temperature phosphorescence spectroscopy. The mixed metal Cu, Zn species forming in MT1A, MT2, and MT3 have similar stoichiometries and their emission spectral properties indicate that analogous clusters form in the three isoforms. Three parallel metallation pathways have been proposed through analysis of the detailed Cu, Zn speciation in MT1A, MT2, and MT3. Pathway ① results in Cu5Zn5-MT and Cu9Zn3-MT. Pathway ② involves Cu6Zn4-MT and Cu10Zn2-MT. Pathway ③ includes Cu8Zn4-MT. Speciation analysis indicates that Pathway ② is the preferred pathway for MT2. This is also evident in the phosphorescence spectra with the 750 nm emission from Cu6Zn4-MT being most prominent in MT2. We see no evidence for different MT isoforms being optimized or exhibiting preferences for certain metals. We discuss the probable stoichiometry for MTs in vivo based on the in vitro determined binding constants.


Asunto(s)
Metalotioneína , Isótopos de Zinc , Animales , Humanos , Metalotioneína/metabolismo , Metales/metabolismo , Isoformas de Proteínas , Mamíferos/metabolismo
14.
Mar Pollut Bull ; 202: 116240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522134

RESUMEN

Samples of Anemonia sulcata were collected in 2022 from different areas of the Canary Islands affected by different natural contamination sources, such sandstorms, submarine volcanic activity, continuous rainfall, upwelling and dinoflagellate blooms. Significant differences were observed between the zones for the metals and trace elements analyzed (Al, Zn, Cd, Pb, Ni, Co, Fe, B, Cu, Mg and Li). Anemones from volcanic areas showed higher levels of Cd, Pb and Ni. Individuals from sandstorm areas showed elevated levels of Al, Zn and Fe. Samples collected from areas affected by upwelling processes had higher concentrations of Cu, Mg and Li. Finally, the areas affected by dinoflagellates showed lower levels of Zn, Pb, Fe, Mg and Li. The study reveals how natural phenomena dramatically influence metal accumulation in A. sulcata, which is of great value for anticipating and managing potential problems associated with public health.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Metales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Animales , Metales/análisis , Metales/metabolismo , Anémonas de Mar , Dinoflagelados , España , Metales Pesados/análisis
15.
Environ Sci Pollut Res Int ; 31(18): 26880-26894, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456979

RESUMEN

Salt marshes are capable of mitigating metal pollution in coastal environments, yet the efficacy of this remediation is contingent upon various environmental factors and the plant species involved. This study investigates the influence of different anthropogenic activities, including industrial, urban, recreational (in an insular area), and dredging operations, on the bioaccumulation of eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) within Spartina alterniflora Loisel. in the Patos Lagoon estuary, Brazil. The research aims to assess the pattern of metal bioaccumulation and distribution within the plant's leaves, stems, and roots while also examining metal presence in the sediment. Our main findings reveal that S. alterniflora exhibited elevated metal levels in its plant structure directly related with the metal concentrations in the surrounding sediment, which, in turn, is related to the different anthropogenic activities. The industrial area presented the highest metal levels in sediment and plant sections, followed by dredging, insular, and urban areas. This same pattern was mirrored for the bioconcetration factors (BCF), with the BCFs consistently indicating active metal bioaccumulation across all areas and for most of the metals. This provides evidence of the metal bioaccumulation pattern in S. alterniflora, with elevated BCFs in areas affected by activities with a higher degree of impact. Translocation factors (TF) showed varying metal mobility patterns within the plant's below-ground and above-ground sections across the different areas, with only Hg exhibiting consistent translocation across all study areas. Zn was the primary metal contributor in all plant sections, followed by Pb and Cu. It is worth noting that Pb is a non-essential metal for this plant, highlighting the relationship between elevated Pb contributions in the plant sections and the bioaccumulation of this metal within the plant's structure. Overall, this study emphasizes the bioaccumulation capacity of S. alterniflora and elucidate the intrinsic connection between different anthropogenic activities and their impact on the resultant availability and bioaccumulation of metals by this salt marsh plant.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Estuarios , Metales , Poaceae , Humedales , Poaceae/metabolismo , Brasil , Metales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Metales Pesados/metabolismo , Sedimentos Geológicos/química
16.
Microbiol Spectr ; 12(5): e0375623, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38534119

RESUMEN

Zur (zinc uptake regulator) is a significant member of the Fur (ferric uptake regulator) superfamily, which is widely distributed in bacteria. Zur plays crucial roles in zinc homeostasis and influences cell development and environmental adaptation in various species. Yersinia pseudotuberculosis is a Gram-negative enteric that pathogen usually serves as a model organism in pathogenicity studies. The regulatory effects of Zur on the zinc transporter ZnuABC and the protein secretion system T6SS have been documented in Y. pseudotuberculosis. In this study, a comparative transcriptomics analysis between a ∆zur mutant and the wild-type (WT) strain of Y. pseudotuberculosis was conducted using RNA-seq. This analysis revealed global regulation by Zur across multiple functional categories, including membrane transport, cell motility, and molecular and energy metabolism. Additionally, Zur mediates the homeostasis not only of zinc but also ferric and magnesium in vivo. There was a notable decrease in 35 flagellar biosynthesis and assembly-related genes, leading to reduced swimming motility in the ∆zur mutant strain. Furthermore, Zur upregulated multiple simple sugar and oligopeptide transport system genes by directly binding to their promoters. The absence of Zur inhibited biofilm formation as well as reduced resistance to chloramphenicol and acidic stress. This study illustrates the comprehensive regulatory functions of Zur, emphasizing its importance in stress resistance and pathogenicity in Y. pseudotuberculosis. IMPORTANCE: Bacteria encounter diverse stresses in the environment and possess essential regulators to modulate the expression of genes in responding to the stresses for better fitness and survival. Zur (zinc uptake regulator) plays a vital role in zinc homeostasis. Studies of Zur from multiple species reviewed that it influences cell development, stress resistance, and virulence of bacteria. Y. pseudotuberculosis is an enteric pathogen that serves a model organism in the study of pathogenicity, virulence factors, and mechanism of environmental adaptation. In this study, transcriptomics analysis of Zur's regulons was conducted in Y. pseudotuberculosis. The functions of Zur as a global regulator in metal homeostasis, motility, nutrient acquisition, glycan metabolism, and nucleotide metabolism, in turn, increasing the biofilm formation, stress resistance, and virulence were reviewed. The importance of Zur in environmental adaptation and pathogenicity of Y. pseudotuberculosis was emphasized.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Regulación Bacteriana de la Expresión Génica , Homeostasis , Yersinia pseudotuberculosis , Zinc , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Zinc/metabolismo , Estrés Fisiológico , Metales/metabolismo , Virulencia/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
17.
Sci Total Environ ; 925: 171762, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38508270

RESUMEN

Ores serve as energy and nutrient sources for microorganisms. Through complex biochemical processes, microorganisms disrupt the surface structure of ores and release metal elements. However, there is limited research on the mechanisms by which bacteria with different nutritional modes act during the leaching process of different crystal structure ores. This study evaluated the leaching efficiency of two types of bacteria with different nutritional modes, heterotrophic bacterium Bacillus mucilaginosus (BM) and autotrophic bacterium Acidithiobacillus ferrooxidans (AF), on different crystal structure lithium silicate ores (chain spodumene, layered lepidolite and ring elbaite). The aim was to understand the behavioral differences and decomposition mechanisms of bacteria with different nutritional modes in the process of breaking down distorted crystal lattices of ores. The results revealed that heterotrophic bacterium BM primarily relied on passive processes such as bacterial adsorption, organic acid corrosion, and the complexation of small organic acids and large molecular polymers with metal ions. Autotrophic bacterium AF, in addition to exhibiting stronger passive processes such as organic acid corrosion and complexation, also utilized an active transfer process on the cell surface to oxidize Fe2+ in the ores for energy maintenance and intensified the destruction of ore lattices. As a result, strain AF exhibited a greater leaching effect on the ores compared to strain BM. Regarding the three crystal structure ores, their different stacking modes and proportions of elements led to significant differences in structural stability, with the leaching effect being highest for layered structure, followed by chain structure, and then ring structure. These findings indicate that bacteria with different nutritional modes exhibit distinct physiological behaviors related to their nutritional and energy requirements, ultimately resulting in different sequences and mechanisms of metal ion release from ores after lattice damage.


Asunto(s)
Acidithiobacillus , Bacterias , Litio , Bacterias/metabolismo , Metales/metabolismo , Silicatos/química , Iones
18.
Apoptosis ; 29(5-6): 586-604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38324163

RESUMEN

Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.


Asunto(s)
Ferroptosis , Homeostasis , Humanos , Ferroptosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Animales , Metales/metabolismo , Metales/toxicidad , Calcio/metabolismo , Muerte Celular Regulada/efectos de los fármacos , Cobre/metabolismo , Cobre/toxicidad , Zinc/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
19.
Plant Cell Environ ; 47(5): 1852-1864, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38334305

RESUMEN

Zinc (Zn) deficiency not only impairs plant growth and development but also has negative effects on human health. Rice (Oryza Sativa L.) is a staple food for over half of the global population, yet the regulation of Zn deficiency response in rice remains largely unknown. In this study, we provide evidence that two F-group bZIP transcription factors, OsbZIP48/50, play a crucial role in Zn deficiency response. Mutations in OsbZIP48/50 result in impaired growth and reduced Zn/Fe/Cu content under Zn deficiency conditions. The N-terminus of OsbZIP48/OsbZIP50 contains two Zn sensor motifs (ZSMs), deletion or mutation of these ZSMs leads to increased nuclear localization. Both OsbZIP48 and OsbZIP50 exhibit transcriptional activation activity, and the upregulation of 1117 genes involved in metal uptake and other processes by Zn deficiency is diminished in the OsbZIP48/50 double mutant. Both OsbZIP48 and OsbZIP50 bind to the promoter of OsZIP10 and activate the ZDRE cis-element. Amino acid substitution mutation of the ZSM domain of OsbZIP48 in OsbZIP50 mutant background increases the content of Zn/Fe/Cu in brown rice seeds and leaves. Therefore, this study demonstrates that OsbZIP48/50 play a crucial role in regulating metal homoeostasis and identifies their downstream genes involved in the Zn deficiency response in rice.


Asunto(s)
Oryza , Zinc , Humanos , Zinc/metabolismo , Oryza/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Metales/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas
20.
Emerg Top Life Sci ; 8(1): 45-56, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38362914

RESUMEN

Metal ions such as zinc and copper play important roles in host-microbe interactions and their availability can drastically affect the survival of pathogenic bacteria in a host niche. Mechanisms of metal homeostasis protect bacteria from starvation, or intoxication, defined as when metals are limiting, or in excess, respectively. In this mini-review, we summarise current knowledge on the mechanisms of resistance to metal stress in bacteria, focussing specifically on the homeostasis of cellular copper and zinc. This includes a summary of the factors that subvert metal stress in bacteria, which are independent of metal efflux systems, and commentary on the role of small molecules and metabolic systems as important mediators of metal resistance.


Asunto(s)
Cobre , Metales , Cobre/metabolismo , Metales/metabolismo , Homeostasis , Bacterias/metabolismo , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...